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1. Introduction

Finite element analysis ofproblems involving incompressible

or nearly-incompressiblematerials at large strains is common

in solid biomechanics since soft tissues are known to have a

highwater content. However, these studies are often severely

limited due to volumetric locking, a condition of excessive

non-realistic stiffness which results from interpolation errors

(Fung and Tong, 2001). Increasing the order of shape

functions generally reduces volumetric locking but does not

allow to fully deal with the problem of incompressibility.

Many numerical approaches have been proposed in the

literature to address this issue. Among the most popular

ones are the mixed formulation (Brezzi and Fortin, 1991),

the under-integrated elements and the B-bar/F-bar

methods. These methods have proved to be very efficient

in dealing with incompressibility. However, they also

present a certain number of drawbacks. For example, the

reduced integration procedure may introduce spurious

zero energy deformation modes in hexahedral elements,

also known as hourglass instabilities, and often requires

specialized schemes to stabilize the problem.

In the biomechanical community, the use of finite

element models as research tools has grown exponentially

during the last years. However, attention to the numerical

aspects listed above have not kept pace with the general

use of finite element modelling and are generally

overlooked (Burkhart et al., 2013).

The purpose of this paper was therefore to illustrate the

influence of the choice of the finite element technology on

the occurrence of locking and hourglass instabilities.

We chose to focus on the case study of the activation of the

posterior genio-glossus (GGp) that is a lingual muscle

located at the root of the tongue and inserts in the front to

the mandible. The activation of this muscle compresses the

tongue in the lower part and generates a forward and

upward movement of the tongue body, because of the

incompressibility of tongue tissues (for example during the

production of the phonemes /i/ or /s/).

2. Methods

2.1 The tongue model

A 3D biomechanical model of the tongue is developed in

ANSYS (Figure 1(a)), based on the pioneer work of

(Buchaillard et al., 2009). The same dataset and mechanical

properties for passive tissues (including inactivemuscles) are

used (Mooney-RivlinmodelwithparametersC10 ¼ 1037Pa,

C20 ¼ 486Pa and bulk modulus K ¼ 2.107 Pa).

Muscle activation is modelled using the finite element

(FE) formulation of the Hill muscle model proposed by

(Blemker et al., 2005). This model was implemented using

the USERMAT functionality of ANSYS.

A MATLAB script is developed to automatically

select in the mesh the elements belonging to the GGp and

to define the fiber direction in each element (Figure 1(b)).

The total volume of this set of elements is specifically

controlled in such a way that it remains constant regardless

of the FE discretisation (tolerance ^5 %).

Encastre boundary conditions are enforced on the

bottom nodes of themodel to simulate very roughly the role

of the mouth floor and the attachments to the mandible.

2.2 Comparison between meshes

The biomechanical response of the tongue model to GGp

activation is studied. A parametric study is conducted to

evaluate the sensitivity of the tongue response to:

the type of finite element used for the discretisation (pure

tetrahedral mesh vs mixed tetrahedral/hexahedral mesh)

the order of the interpolation shape functions (First order

solid285/solid187 4-node tetrahedrals and solid185/

solid186 8-node hexahedrals vs second order solid187

10-node tetrahedrals and solid186 20-node hexahedrals)

the integration method in hexahedral elements (i.e. full

integration method vs reduced integration method).

A convergence test is performed on both the pure

tetrahedral and mixed tetrahedral / hexahedral meshes with
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standard first order elements, showing that further mesh

refinement produces a negligible change in the solution.

3. Results and discussion

3.1 Salient qualitative results

The norm of the displacement vector (in mm) of a point on

the tongue groove (node A on Figure 1(a)) is extracted.

The results are listed in Table 1 below.

3.2 Discussion

Our results show that both tetrahedral and hexahedral

standard pure-displacement first order elements (solid187/

solid186) exhibit volumetric locking. With second order

elements, however (i.e. with mid-side nodes), the

displacement is more important (þ60% increase) and

the results are comparable to those obtained with the

mixed u-P formulation (13.8mm versus 14.1mm in the

mixed mesh). This indicates that second order elements

are effective in dealing with volumetric locking.

A computationally more efficient strategy to avoid

volumetric locking is to use a reduced integration scheme.

Our results, however, show that, in spite of the hourglass

control algorithm implemented in solid185 first order

elements, these tend to be excessively flexible (15.8mm).

Careful examination of the deformed mesh showed the

presence of the characteristic ‘hourglass’ shape in some

elements, confirming that the hourglass control algorithm

implemented in ANSYS is not efficient in preventing the

apparition of hourglass instabilities. We therefore

recommend that careful attention be paid to this

possibility.

Finally, changing the element formulation (from pure

displacement to mixed u-P) is computationally more

expensive (10 times more) but the increase in accuracy is

limited (þ2%).

4. Conclusions

The numerical difficulties of performing a FE analysis of

quasi-incompressible materials are illustrated in this case

study. Our results show that the choice of element

technology has a significant influence on the appearance

of volumetric locking and highlight the importance of

running appropriate sensibility studies to ensure correct

accuracy of the results. More precisely, avoiding

volumetric locking, we strongly suggest avoiding

using standard pure-displacement first order elements

and, especially, tetrahedral elements (where volumetric

locking is the most important). Where possible, we

recommend the use of second order elements. If this is not

possible, we recommend the use of a mixed tetrahedral/

hexahedral mesh.
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Table 1. Displacement in millimeters at node A of the tongue in
response to GGp muscle activation.

ANSYS
elements

Element
formulation

Integration
type

Tetrahedral
mesh

Mixed
mesh

Solid187 4-node tetrahedral. Pure displ.
formulation

Reduced
integration

n/a 8,6

Full
integration

6.1 8,6

Solid186 8-node hexahedral Mixed u-P
formulation

Reduced
integration

n/a 8.8

Full
integration

6.1 8.8

Solid285 (mixed u-P
version) 4-node tetrahedral

Pure displ.
formulation

Reduced
integration

n/a 15,8

Full
integration

n/a 11,7

Solid185 8-node hexahedral
(hourglass control for
reduced int.)

Mixed u-P
formulation

Reduced
integration

n/a 15.8

Full
integration

9.6 15.3

Solid187 10-node
tetrahedral

Pure displ.
formulation

Reduced
integration

n/a 13,8

Full
integration

13.6 13.8

Solid186 20-node
hexahedral

Mixed u-P
formulation

Reduced
integration

n/a 14,1

Full
integration

13.7 14,1

n/a ¼ option not available in ANSYS

Figure 1. (a) 3D biomechanical model of the tongue (b) GGp
muscle controlled by muscle activation.
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